Contents
TEM Imaging
Imports¶
%matplotlib widget
import ase
import abtem
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import Voronoi, voronoi_plot_2d, cKDTree
from matplotlib.patches import Circle
from ipywidgets import HBox, VBox, widgets, interact, Dropdown, Label, Layout
Atomic Model¶
STO_unit_cell = ase.io.read('data/SrTiO3.cif')
STO_atoms = ase.build.surface(STO_unit_cell, (1,1,0), 4, periodic=True)*(8*4,12*4,4)
np.random.seed(111111)
points = np.random.rand(8,2)
points = np.vstack((points,np.array([[0,0],[0,1],[1,0],[1,1]])))
points[:,0] *= STO_atoms.cell[0,0]/2
points[:,1] *= STO_atoms.cell[1,1]/2
points[:,0] += STO_atoms.cell[0,0]/4
points[:,1] += STO_atoms.cell[1,1]/4
voronoi = Voronoi(points)
voronoi_kdtree = cKDTree(points)
grains = ase.Atoms(cell=STO_atoms.cell,pbc=True)
np.random.seed(111111)
random_angles = np.random.rand(8)*180-90
for grain in range(12):
STO_atoms_rotated = STO_atoms.copy()
angle = np.random.choice(random_angles)
#print(f"{grain=}, {angle=:.3}")
STO_atoms_rotated.rotate(
angle,
(0,0,1),
center=STO_atoms.cell.lengths()/2
)
_, reg = voronoi_kdtree.query(STO_atoms_rotated.positions[:,:2])
del STO_atoms_rotated[np.invert(reg==grain)]
grains+=STO_atoms_rotated
del grains[grains.positions[:,0]<STO_atoms.cell[0,0]/4]
del grains[grains.positions[:,0]>3*STO_atoms.cell[0,0]/4]
del grains[grains.positions[:,1]<STO_atoms.cell[1,1]/4]
del grains[grains.positions[:,1]>3*STO_atoms.cell[1,1]/4]
grains.cell[0,0] = grains.cell[1,1] = 80
grains.center(axis=(0,1), vacuum = 20)
# abtem.show_atoms(grains);
abTEM potential and wave¶
potential = abtem.Potential(
grains,
gpts=(512,512),
device='cpu',
projection='infinite',
parametrization='kirkland'
).build()
wave = abtem.PlaneWave(energy=300e3)
TEM Simulation¶
exit_wave = wave.multislice(potential)
exit_wave.compute()
[########################################] | 100% Completed | 1.68 sms
<abtem.waves.Waves at 0x154167e90>
def return_scaled_histogram_ordering(array, vmin=None, vmax=None, normalize=False):
"""
Utility function for calculating min and max values for plotting array
based on distribution of pixel values
Parameters
----------
array: np.array
array to be plotted
vmin: float
lower fraction cut off of pixel values
vmax: float
upper fraction cut off of pixel values
normalize: bool
if True, rescales from 0 to 1
Returns
----------
scaled_array: np.array
array clipped outside vmin and vmax
vmin: float
lower value to be plotted
vmax: float
upper value to be plotted
"""
if vmin is None:
vmin = 0.02
if vmax is None:
vmax = 0.98
vals = np.sort(array.ravel())
ind_vmin = np.round((vals.shape[0] - 1) * vmin).astype("int")
ind_vmax = np.round((vals.shape[0] - 1) * vmax).astype("int")
ind_vmin = np.max([0, ind_vmin])
ind_vmax = np.min([len(vals) - 1, ind_vmax])
vmin = vals[ind_vmin]
vmax = vals[ind_vmax]
if vmax == vmin:
vmin = vals[0]
vmax = vals[-1]
scaled_array = array.copy()
scaled_array = np.where(scaled_array < vmin, vmin, scaled_array)
scaled_array = np.where(scaled_array > vmax, vmax, scaled_array)
if normalize:
scaled_array -= scaled_array.min()
scaled_array /= scaled_array.max()
vmin = 0
vmax = 1
return scaled_array, vmin, vmax
exit_wave_array = exit_wave.array[80:-80,80:-80]
s = exit_wave_array.shape
x = np.fft.fftfreq(s[0], 1/s[0])
y = np.fft.fftfreq(s[1], 1/s[1])
yy, xx = np.meshgrid(x, y)
with plt.ioff():
dpi = 72
fig, axs = plt.subplots(1,2, figsize=(675/dpi, 400/dpi), dpi=dpi)
#plot FFT
w0 = np.hanning(s[1]) * np.hanning(s[0])[:, None]
axs[0].imshow(
return_scaled_histogram_ordering(
np.fft.fftshift(
np.abs(
np.fft.fft2(
exit_wave_array * w0
)
)
)
)[0],
cmap = "gray"
)
#make mask
radius = 35
x0, y0 = 0,0
mask = np.zeros(s)
mask[(xx-x0)**2 + (yy-y0) **2 < radius**2] = 1
# add circles
circle = Circle((
y0+s[0]/2, x0 + s[0]/2
), radius, fill = False, color = "red", linewidth = 5)
axs[0].add_patch(circle)
#plot image
axs[1].imshow(
return_scaled_histogram_ordering(np.abs(np.fft.ifft2((np.fft.fft2(exit_wave_array) * mask))))[0],
cmap = "gray",
)
axs[0].set_xticks([])
axs[0].set_yticks([])
axs[1].set_xticks([])
axs[1].set_yticks([])
axs[0].set_title('diffraction plane')
axs[1].set_title('imaging plane')
# interact
def update_ims(x0, y0, radius):
mask = np.zeros(s)
mask[(xx-x0)**2 + (yy-y0) **2 < radius**2] = 1
mask[s[0]//2-1:s[0]//2+1, s[1]//2-1:s[1]//2+1] = 1
axs[0].clear()
axs[0].imshow(
return_scaled_histogram_ordering(
np.fft.fftshift(
np.abs(
np.fft.fft2(
exit_wave_array
)
)
)
)[0],
cmap = "gray"
)
circle = Circle((
x0 + s[0]/2, y0 + s[0]/2
), radius, fill = False, color = "red", linewidth = 5)
axs[0].add_patch(circle)
axs[0].set_xticks([])
axs[0].set_yticks([])
axs[0].set_title('diffraction plane')
axs[1].imshow(
return_scaled_histogram_ordering(np.abs(np.fft.ifft2((np.fft.fft2(exit_wave_array) * mask))))[0],
cmap = "gray",
)
plt.tight_layout()
fig.canvas.draw_idle()
style = {
'description_width': 'initial',
}
layout = Layout(width='250px',height='30px')
x0 = widgets.IntSlider(
value = 0, min = -s[0]/2, max = s[0]/2,
step = 2,
description = "x position",
style = style,
layout = layout,
)
y0 = widgets.IntSlider(
value = 0, min = -s[0]/2, max = s[0]/2,
step = 2,
description = "y position",
style = style,
layout = layout,
)
radius = widgets.IntSlider(
value = 30, min = 0, max = 100,
step = 5,
description = "aperature radius",
style = style,
layout = layout,
)
widgets.interactive_output(
update_ims,
{
'x0':x0,
'y0':y0,
'radius':radius,
},
)
fig.canvas.resizable = False
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.canvas.toolbar_visible = True
fig.canvas.layout.width = '675px'
fig.canvas.layout.height = '400px'
fig.canvas.toolbar_position = 'bottom'
widget = widgets.VBox(
[
fig.canvas,
# VBox(
HBox(
[x0,y0,radius]
)
# ),
],
)
display(widget);
VBox(children=(Canvas(footer_visible=False, header_visible=False, layout=Layout(height='400px', width='675px')…