Contents
Interactive figure for 2D Fourier transforms
TODO: add colorwheel legend?
%matplotlib widget
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display
from ipywidgets import HBox, VBox, Dropdown, Layout, Label, Output, widgets
from matplotlib import cm
from matplotlib.colors import hsv_to_rgb
dpi = 72
shape_fft = (32,32)
shape_real = (128,128)
# fourier coordinates
kx = np.fft.fftfreq(shape_fft[0],d=1.0)[:,None]
ky = np.fft.fftfreq(shape_fft[1],d=1.0)[None,:]
k2 = kx**2 + ky**2
k1 = np.sqrt(k2)
def make_im_real(
im_fft,
shape_real,
):
s = im_fft.shape
im_real = np.zeros(shape_real,dtype='complex')
im_real[:s[0]//2, :s[1]//2] = im_fft[:s[0]//2, :s[1]//2]
im_real[shape_real[0]-s[0]//2:,:s[1]//2] = im_fft[ s[0]//2:,:s[1]//2]
im_real[:s[0]//2, shape_real[1]-s[1]//2:] = im_fft[:s[0]//2, s[1]//2:]
im_real[shape_real[0]-s[0]//2:,shape_real[1]-s[1]//2:] = im_fft[ s[0]//2:, s[1]//2:]
im_real = np.fft.ifft2(im_real)
return im_real
def complex_im(
im,
amp_range = None,
amp_power = 0.75,
):
if amp_range is None:
amp_range = np.array((0, np.max(np.abs(im))))
a = np.clip((np.abs(im)-amp_range[0]) / (amp_range[1]-amp_range[0]),0,1)**amp_power
p = np.angle(im)
im_rgb = np.ones((im.shape[0],im.shape[1],3))
im_rgb[:,:,0] = np.mod(p/(2*np.pi),1.0)
im_rgb[:,:,2] = a
im_rgb = hsv_to_rgb(im_rgb)
# rescale color ranges?
# im_rgb[:,:,0] = im_rgb[:,:,0]*1.0 + im_rgb[:,:,2]*0.3
im_rgb[:,:,1] = im_rgb[:,:,1]*0.7 + im_rgb[:,:,2]*0.7
# im_rgb[:,:,2] = im_rgb[:,:,2]*1.4
im_rgb = np.clip(im_rgb,0,1)
return im_rgb
# initial images
k_max = 0.39
dk = kx[1]-kx[0]
im_fft = np.clip(
(k_max - k1)/dk + 0.5,
0,
1,
)
im_real = make_im_real(im_fft,shape_real)
# fig = plt.figure(figsize=(680/dpi, 340/dpi), dpi=dpi)
with plt.ioff():
fig = plt.figure(figsize=(500/dpi, 300/dpi), dpi=dpi)
ax_fft = fig.add_axes([0.01, 0.02, 0.41, 0.96])
ax_real = fig.add_axes([0.51, 0.02, 0.41, 0.96])
# global variables
fig.dragging = False
fig.xy0 = (0,0)
fig.im_fft = im_fft
fig.im_fft_0 = im_fft.copy()
# plot initial images
h_im_fft = ax_fft.imshow(
np.fft.fftshift(complex_im(fig.im_fft)),
)
h_im_real = ax_real.imshow(
np.fft.fftshift(complex_im(im_real)),
)
# origins
ax_fft.scatter(
shape_fft[1]//2,
shape_fft[0]//2,
marker = '+',
color = 'r',
s = 100,
)
ax_real.scatter(
shape_real[1]//2,
shape_real[0]//2,
marker = '+',
color = 'r',
s = 100,
)
# Appearance
fig.canvas.resizable=False
fig.canvas.toolbar_visible = True
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.canvas.layout.width = '500px'
fig.canvas.layout.height = '300px'
fig.canvas.toolbar_position = 'bottom'
# Axes appearance
ax_fft.axis('off');
ax_real.axis('off');
ax_fft.set_title('Click to switch pixels on and off');
ax_real.set_title('Drag to move with Fourier shift theorem');
def update_images():
h_im_fft.set_data(np.fft.fftshift(complex_im(fig.im_fft)))
im_real = make_im_real(fig.im_fft,shape_real)
h_im_real.set_data(np.fft.fftshift(complex_im(im_real)))
def button_press_callback(event):
# if left click and within axes, proceed with mouse movement event
if event.inaxes is None:
return
if event.button != 1:
return
# Check if mouse is within fft axes
t = ax_fft.transData.inverted()
xy_fft = t.transform([event.x,event.y])[::-1]
if xy_fft[0] > 0 and \
xy_fft[1] > 0 and \
xy_fft[0] < shape_fft[0] and \
xy_fft[1] < shape_fft[1]:
x = np.mod(np.round(xy_fft[0]+shape_fft[0]//2).astype('int'),shape_fft[0])
y = np.mod(np.round(xy_fft[1]+shape_fft[1]//2).astype('int'),shape_fft[1])
if np.abs(fig.im_fft[x,y]) < 0.1:
fig.im_fft[x,y] = 1.0 * np.exp(1j*np.angle(fig.im_fft[x,y]))
else:
fig.im_fft[x,y] = 1e-8 * np.exp(1j*np.angle(fig.im_fft[x,y]))
update_images()
else:
# Check if mouse is within real axes
t = ax_real.transData.inverted()
xy_real = t.transform([event.x,event.y])[::-1]
fig.dragging = True
fig.xy0 = xy_real
fig.im_fft_0 = fig.im_fft.copy()
def motion_notify_callback(event):
if fig.dragging is False:
return
# if event.inaxes is None:
# return
if event.button != 1:
return
t = ax_real.transData.inverted()
xy_real = t.transform([event.x,event.y])[::-1]
dx = (xy_real[0] - fig.xy0[0]) / 4
dy = (xy_real[1] - fig.xy0[1]) / 4
fig.im_fft = fig.im_fft_0 * np.exp((-1j*2.0*np.pi)*(kx*dx + ky*dy))
update_images()
def button_release_callback(event):
fig.dragging = False
update_images()
# button callbacks
fig.canvas.mpl_connect('button_press_event', button_press_callback)
fig.canvas.mpl_connect('button_release_event', button_release_callback)
fig.canvas.mpl_connect('motion_notify_event', motion_notify_callback)
complex_functions = (
'circular aperture - large',
'circular aperture - medium',
'circular aperture - small',
'circular aperture - prism 2',
'circular aperture - prism 4',
'lattice - hexagonal',
'lattice - square',
'lattice - complex square',
'two beam',
'systematic row',
)
# update the plots with a pre-selected function
def select_preset_eventhandler(change):
if change.new == complex_functions[0]:
# circular aperture - large
k_max = 0.29
fig.im_fft = np.clip((k_max - k1)/dk + 0.5,0,1)
elif change.new == complex_functions[1]:
# circular aperture - medium
k_max = 0.19
fig.im_fft = np.clip((k_max - k1)/dk + 0.5,0,1)
elif change.new == complex_functions[2]:
# circular aperture - small
k_max = 0.09
fig.im_fft = np.clip((k_max - k1)/dk + 0.5,0,1)
elif change.new == complex_functions[3]:
# circular aperture - prism 2
k_max = 0.29
fig.im_fft = np.clip((k_max - k1)/dk + 0.5,0,1)
fig.im_fft[1::2,:] = 0.0
fig.im_fft[:,1::2] = 0.0
elif change.new == complex_functions[4]:
# circular aperture - prism 4
k_max = 0.29
fig.im_fft = np.clip((k_max - k1)/dk + 0.5,0,1)
fig.im_fft[1::4,:] = 0.0
fig.im_fft[2::4,:] = 0.0
fig.im_fft[3::4,:] = 0.0
fig.im_fft[:,1::4] = 0.0
fig.im_fft[:,2::4] = 0.0
fig.im_fft[:,3::4] = 0.0
elif change.new == complex_functions[5]:
# lattice - hexagonal
fig.im_fft = np.zeros_like(fig.im_fft)
fig.im_fft[0,0] = 2
fig.im_fft[ 8, 0] = 1
fig.im_fft[-8, 0] = 1
fig.im_fft[-4, 7] = 1
fig.im_fft[ 4, 7] = 1
fig.im_fft[-4,-7] = 1
fig.im_fft[ 4,-7] = 1
elif change.new == complex_functions[6]:
# lattice - square
fig.im_fft = np.zeros_like(fig.im_fft)
fig.im_fft[0,0] = 4
fig.im_fft[ 4, 4] = 1
fig.im_fft[-4, 4] = 1
fig.im_fft[ 4,-4] = 1
fig.im_fft[-4,-4] = 1
fig.im_fft[ 0, 8] = 1
fig.im_fft[ 0,-8] = 1
fig.im_fft[ 8, 0] = 1
fig.im_fft[-8, 0] = 1
fig.im_fft[ 8, 8] = 1
fig.im_fft[-8, 8] = 1
fig.im_fft[ 8,-8] = 1
fig.im_fft[-8,-8] = 1
fig.im_fft[ 4, 12] = 1
fig.im_fft[-4, 12] = 1
fig.im_fft[ 4,-12] = 1
fig.im_fft[-4,-12] = 1
fig.im_fft[ 12, 4] = 1
fig.im_fft[-12, 4] = 1
fig.im_fft[ 12,-4] = 1
fig.im_fft[-12,-4] = 1
elif change.new == complex_functions[7]:
# lattice - square complex
fig.im_fft = np.zeros_like(fig.im_fft)
fig.im_fft[0,0] = 1
fig.im_fft[ 8, 0] = 1
fig.im_fft[-8, 0] = 1
fig.im_fft[ 0, 8] = 1
fig.im_fft[ 0,-8] = 1
fig.im_fft[ 8, 8] = 1
fig.im_fft[-8, 8] = 1
fig.im_fft[ 8,-8] = 1
fig.im_fft[-8,-8] = 1
fig.im_fft[ 4, 4] = 0.5
fig.im_fft[-4, 4] = 0.5
fig.im_fft[ 4,-4] = 0.5
fig.im_fft[-4,-4] = 0.5
fig.im_fft[ 12, 4] = 0.5
fig.im_fft[-12, 4] = 0.5
fig.im_fft[ 12,-4] = 0.5
fig.im_fft[-12,-4] = 0.5
fig.im_fft[ 4, 12] = 0.5
fig.im_fft[-4, 12] = 0.5
fig.im_fft[ 4,-12] = 0.5
fig.im_fft[-4,-12] = 0.5
fig.im_fft[ 12, 12] = 0.5
fig.im_fft[-12, 12] = 0.5
fig.im_fft[ 12,-12] = 0.5
fig.im_fft[-12,-12] = 0.5
fig.im_fft[ 4, 0] = 0.25
fig.im_fft[-4, 0] = 0.25
fig.im_fft[ 0, 4] = 0.25
fig.im_fft[ 0,-4] = 0.25
fig.im_fft[ 8, 4] = 0.25
fig.im_fft[-8, 4] = 0.25
fig.im_fft[ 8,-4] = 0.25
fig.im_fft[-8,-4] = 0.25
fig.im_fft[ 4, 8] = 0.25
fig.im_fft[-4, 8] = 0.25
fig.im_fft[ 4,-8] = 0.25
fig.im_fft[-4,-8] = 0.25
fig.im_fft[ 12, 0] = 0.25
fig.im_fft[-12, 0] = 0.25
fig.im_fft[0, 12] = 0.25
fig.im_fft[0,-12] = 0.25
fig.im_fft[ 8, 12] = 0.25
fig.im_fft[-8, 12] = 0.25
fig.im_fft[ 8,-12] = 0.25
fig.im_fft[-8,-12] = 0.25
fig.im_fft[ 12, 8] = 0.25
fig.im_fft[-12, 8] = 0.25
fig.im_fft[ 12,-8] = 0.25
fig.im_fft[-12,-8] = 0.25
elif change.new == complex_functions[8]:
# two beam
fig.im_fft = np.zeros_like(fig.im_fft)
fig.im_fft[0,0] = 1
fig.im_fft[5,8] = 1
elif change.new == complex_functions[9]:
# two beam
fig.im_fft = np.zeros_like(fig.im_fft)
fig.im_fft[0,0] = 1
fig.im_fft[-12,8] = 1
fig.im_fft[-9,6] = 1
fig.im_fft[-6,4] = 1
fig.im_fft[-3,2] = 1
fig.im_fft[12,-8] = 1
fig.im_fft[9,-6] = 1
fig.im_fft[6,-4] = 1
fig.im_fft[3,-2] = 1
update_images()
# Widgets
dropdown = Dropdown(
options = complex_functions,
layout = Layout(width='180px',height='30px'),
)
dropdown.observe(select_preset_eventhandler, names='value')
# widget layouts
widget = HBox([
fig.canvas,
VBox([
Label('Example Functions',layout=Layout(width='180px',height='30px')),
dropdown,
]),
])
display(widget);
HBox(children=(Canvas(footer_visible=False, header_visible=False, layout=Layout(height='300px', width='500px')…