Contents
Interactive CTF/PSF
%matplotlib widget
import numpy as np
import abtem
from matplotlib import cm, colors as mcolors, pyplot as plt
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
from colorspacious import cspace_convert
from IPython.display import display
import ipywidgets
def Complex2RGB(complex_data, vmin=None, vmax=None, power=None, chroma_boost=1):
"""
complex_data (array): complex array to plot
vmin (float) : minimum absolute value
vmax (float) : maximum absolute value
power (float) : power to raise amplitude to
chroma_boost (float): boosts chroma for higher-contrast (~1-2.5)
"""
amp = np.abs(complex_data)
phase = np.angle(complex_data)
if power is not None:
amp = amp**power
if np.isclose(np.max(amp), np.min(amp)):
if vmin is None:
vmin = 0
if vmax is None:
vmax = np.max(amp)
else:
if vmin is None:
vmin = 0.02
if vmax is None:
vmax = 0.98
vals = np.sort(amp[~np.isnan(amp)])
ind_vmin = np.round((vals.shape[0] - 1) * vmin).astype("int")
ind_vmax = np.round((vals.shape[0] - 1) * vmax).astype("int")
ind_vmin = np.max([0, ind_vmin])
ind_vmax = np.min([len(vals) - 1, ind_vmax])
vmin = vals[ind_vmin]
vmax = vals[ind_vmax]
amp = np.where(amp < vmin, vmin, amp)
amp = np.where(amp > vmax, vmax, amp)
amp = ((amp - vmin) / vmax).clip(1e-16, 1)
J = amp * 61.5 # Note we restrict luminance to the monotonic chroma cutoff
C = np.minimum(chroma_boost * 98 * J / 123, 110)
h = np.rad2deg(phase) + 180
JCh = np.stack((J, C, h), axis=-1)
rgb = cspace_convert(JCh, "JCh", "sRGB1").clip(0, 1)
return rgb
def add_colorbar_arg(ax, chroma_boost=1, c=49, j=61.5):
"""
cax : axis to add cbar to
chroma_boost (float): boosts chroma for higher-contrast (~1-2.25)
c (float) : constant chroma value
j (float) : constant luminance value
"""
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad="2.5%")
h = np.linspace(0, 360, 256, endpoint=False)
J = np.full_like(h, j)
C = np.full_like(h, np.minimum(c * chroma_boost, 110))
JCh = np.stack((J, C, h), axis=-1)
rgb_vals = cspace_convert(JCh, "JCh", "sRGB1").clip(0, 1)
newcmp = mcolors.ListedColormap(rgb_vals)
norm = mcolors.Normalize(vmin=-np.pi, vmax=np.pi)
cb = plt.colorbar(cm.ScalarMappable(norm=norm, cmap=newcmp), cax=cax)
cb.set_label("arg", rotation=0, ha="center", va="bottom")
cb.ax.yaxis.set_label_coords(0.5, 1.01)
cb.set_ticks(np.array([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi]))
cb.set_ticklabels(
[r"$-\pi$", r"$-\dfrac{\pi}{2}$", "$0$", r"$\dfrac{\pi}{2}$", r"$\pi$"]
)
return None
probe_init = abtem.Probe(
energy=300*1e3,
semiangle_cutoff=25,
gpts=(256,256),
sampling=0.4,
).build()
ctf = abtem.CTF(
energy=300*1e3,
semiangle_cutoff=25,
defocus=100,
)
probe = probe_init.apply_ctf(ctf)
array = probe.array.compute()
array_fourier = np.fft.fftshift(np.fft.fft2(np.fft.ifftshift(array)))
rgb_psf = Complex2RGB(array,vmin=0,vmax=1)
rgb_ctf = Complex2RGB(array_fourier,vmin=0,vmax=1)
# widget figure generation
with plt.ioff():
dpi = 72
fig, (ax_ctf,ax_psf) = plt.subplots(1,2,figsize=(675/dpi, 300/dpi), dpi=dpi)
im_ctf = ax_ctf.imshow(rgb_ctf)
im_psf = ax_psf.imshow(rgb_psf)
for ax, title in zip((ax_ctf,ax_psf),['contrast transfer function (CTF)','point spread function (PSF)']):
ax.set_xticks([])
ax.set_yticks([])
add_colorbar_arg(ax)
ax.set_title(title)
fig.tight_layout()
fig.canvas.resizable = False
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.canvas.toolbar_visible = True
fig.canvas.layout.width = '675px'
fig.canvas.layout.height = '330px'
fig.canvas.toolbar_position = 'bottom'
/tmp/ipykernel_33501/13827917.py:9: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
fig, (ax_ctf,ax_psf) = plt.subplots(1,2,figsize=(675/dpi, 300/dpi), dpi=dpi)
def update_aberrations(energy, defocus, C30, semiangle):
ctf = abtem.CTF(
energy=energy*1e3,
semiangle_cutoff = semiangle,
defocus = defocus,
C30 = C30*1e7,
)
probe_init = abtem.Probe(
energy=energy*1e3,
semiangle_cutoff=semiangle,
gpts=(256,256),
sampling=0.4,
).build()
probe = probe_init.apply_ctf(ctf)
array = probe.array.compute()
array_fourier = np.fft.fftshift(np.fft.fft2(np.fft.ifftshift(array)))
rgb_psf = Complex2RGB(array,vmin=0,vmax=1)
rgb_ctf = Complex2RGB(array_fourier,vmin=0,vmax=1)
im_ctf.set_data(rgb_ctf)
im_psf.set_data(rgb_psf)
fig.canvas.draw_idle()
return None
# List of options
option_list = (
'select an option',
'uncorrected STEM',
'uncorrected STEM at Scherzer',
'aberration corrected STEM',
'SEM',
'boundary artifacts',
)
# update the plots with a pre-selected function
def select_preset_eventhandler(change):
if change.new == option_list[1]: #uncorrected STEM
energy.value = 300
defocus.value = 0
C30.value = 1.3
semiangle.value = 10
if change.new == option_list[2]: #uncorrected STEM @ Scherzer
#calculate scherzer
lambda_300kv = abtem.core.energy.energy2wavelength(300e3)
C1_Scherzer = 0.87 * (1.3e7*lambda_300kv) ** 0.5
energy.value = 300
defocus.value = C1_Scherzer
C30.value = 1.3
semiangle.value = 10
if change.new == option_list[3]: #corrected STEM
energy.value = 300
defocus.value = 0
C30.value = 0.001
semiangle.value = 10
if change.new == option_list[4]: #SEM
energy.value = 20
defocus.vaue = 0
C30.value = 5
semiangle.value = 2.5
if change.new == option_list[5]: #artifacts
energy.value = 10
defocus.value = 2000
C30.value = 0
semiangle.value = 20
# Widgets
dropdown = ipywidgets.Dropdown(
options = option_list,
layout = ipywidgets.Layout(width='200px',height='30px'),
)
dropdown.observe(select_preset_eventhandler, names='value')
style = {
'description_width': 'initial',
}
energy = ipywidgets.IntSlider(
value=60, min=10, max=300,
step = 2,
description = "energy (kV)",
style = style,
)
defocus = ipywidgets.IntSlider(
value = 0, min = -2000, max = 2000,
step = 20,
description = "defocus / -1*C1 (A)",
style = style
)
C30 = ipywidgets.FloatSlider(
value = 0, min = 0, max =5,
step = 0.1,
description = "C3 (mm)",
style = style
)
semiangle = ipywidgets.FloatLogSlider(
value=20,
base=10,
min=0, # min exponent of base
max=1.6021, # max exponent of base
step=0.05, # exponent step
description = "semiangle (mrad)",
style = style,
)
ipywidgets.interactive_output(
update_aberrations,
{
'energy':energy,
'defocus':defocus,
'semiangle':semiangle,
'C30':C30,
},
)
None
widget = ipywidgets.VBox(
[
fig.canvas,
ipywidgets.HBox([
ipywidgets.VBox([
energy,
defocus,
semiangle,
C30,
]),
ipywidgets.VBox([
ipywidgets.Label('Preset probes',layout=ipywidgets.Layout(width='100px',height='30px')),
dropdown,
])
]),
],
)
display(widget);
VBox(children=(Canvas(footer_visible=False, header_visible=False, layout=Layout(height='330px', width='675px')…