Nanocartography: Planning for success in analytical electron microscopy
Contents
Interactive Image
This is an example widget for plotting images interactively.
# Widget for displaying images interactively.
%matplotlib widget
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.path import Path
from matplotlib.patches import PathPatch
from IPython.display import display
from ipywidgets import Checkbox, Dropdown, FloatRangeSlider, Layout, HBox, VBox
# Import stack of images
image_stack = np.load('data/im_graphene_EWR.npz')['im_graphene_EWR']
plt.close('all')
plt.ioff()
dpi = 72
hist_range_plot = (-4,4)
hist_range_init = (-1,2)
hist_num_bins = 100
# Histogram visualization
def compute_histogram_values(array):
int_mean = np.mean(array)
int_std = np.sqrt(np.mean((array - int_mean)**2))
int_min = int_mean + hist_range_plot[0] * int_std
int_max = int_mean + hist_range_plot[1] * int_std
init_min = int_mean + hist_range_init[0] * int_std
init_max = int_mean + hist_range_init[1] * int_std
int_ranges = (int_mean, int_std, int_min, int_max,init_min,init_max)
hist_bins = np.linspace(
int_ranges[2],
int_ranges[3],
hist_num_bins+1,
endpoint=True)
hist_data, _ = np.histogram(
array.ravel(),
bins=hist_bins,
)
hist_data = hist_data.astype('float')
hist_data /= np.max(hist_data)
hist_bins = hist_bins[:-1] + (hist_bins[1] - hist_bins[0])/2
return hist_bins, hist_data, int_ranges
hist_bins_all, hist_data_all, int_ranges_all, hist_slider_state = [], [], [], []
for array in image_stack:
hist_bins, hist_data, int_ranges = compute_histogram_values(array)
hist_bins_all.append(hist_bins)
hist_data_all.append(hist_data)
int_ranges_all.append(int_ranges)
hist_slider_state.append(
{
'min':int_ranges[2],
'max':int_ranges[3],
'step':(int_ranges[3]-int_ranges[2])/100,
'value':int_ranges[4:6]
}
)
array = image_stack[0]
hist_bins, hist_data, int_ranges = hist_bins_all[0], hist_data_all[0], int_ranges_all[0]
fig_hist, ax_hist = plt.subplots(figsize=(190/dpi, 160/dpi), dpi=dpi)
hist_path = Path(np.array([hist_bins,hist_data]).T)
hist_patch = PathPatch(hist_path,visible=False,transform=ax_hist.transData)
cmap = plt.colormaps.get_cmap('gray')
im_hist = ax_hist.imshow(
hist_bins[None],
vmin=int_ranges[4],
vmax=int_ranges[5],
cmap=cmap,
origin='lower',
aspect="auto",
interpolation='bilinear',
clip_path=hist_patch,
extent=[int_ranges[2],int_ranges[3],0,np.quantile(hist_data,0.9)],
clip_on=True
)
h_vlines = ax_hist.vlines(
int_ranges[4:6],
ymin = 0,
ymax = 1.1,
colors = [cmap(cmap.N),cmap(0)],
)
ax_hist.set_xlim((int_ranges[2], int_ranges[3]));
ax_hist.set_ylim((0, np.quantile(hist_data,0.9)));
ax_hist.set(yticks=[])
ax_hist.set(yticklabels=[])
ax_hist.set_facecolor((0.9,0.85,0.85))
fig_hist.canvas.toolbar_visible = False
fig_hist.canvas.header_visible = False
fig_hist.canvas.footer_visible = False
fig_hist.canvas.resizable = False
fig_hist.tight_layout()
# Main visualization
fig, ax = plt.subplots(figsize=(480/dpi, 460/dpi), dpi=dpi)
fig.canvas.resizable = False
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.canvas.toolbar_visible = True
fig.canvas.layout.width = '480px'
fig.canvas.toolbar_position = 'bottom'
ax.axis('off')
fig.set_frameon(False)
fig_hist.set_frameon(False)
ax_hist.xaxis.set_tick_params(labelcolor=(0.4,0.4,0.4))
# fig.patch.set_visible(False)
# fig_hist.patch.set_visible(False)
im=ax.imshow(array,cmap=cmap,vmin=int_ranges[4],vmax=int_ranges[5])
divider = make_axes_locatable(ax)
ax_cb = divider.append_axes("right", size="5%", pad="2.5%")
ax_cb.yaxis.set_tick_params(labelcolor=(0.4,0.4,0.4))
fig.add_axes(ax_cb)
fig.colorbar(im, cax=ax_cb)
fig.tight_layout()
# Define pixel size to make scalebar
#pixel_size = 0.0151
#pixel_units = 'nm'
# 130 pixels ~ 2nm
# image is 1400x1400
scalebar_plot=ax.plot((70,70+130),(1400-70,1400-70),lw=5,color=cmap(cmap.N))
scalebar_text=ax.text((130+70*2)/2,1400-70-20,"2 nm",color=cmap(cmap.N),ha='center')
option_list_image = [
'exit wave phase',
'exit wave amplitude',
]
def display_frame(change):
# main
index_name = change['new']
index = option_list_image.index(index_name)
array = image_stack[index]
im.set_data(array)
# hist
hist_bins, hist_data, int_ranges = hist_bins_all[index], hist_data_all[index], int_ranges_all[index]
path = Path(np.array([hist_bins,hist_data]).T)
patch = PathPatch(path,visible=False,transform=ax_hist.transData)
im_hist.set_data(hist_bins[None])
im_hist.set_clip_path(patch)
im_hist.set_extent([int_ranges[2],int_ranges[3],0,np.quantile(hist_data,0.9)])
ax_hist.set_xlim((int_ranges[2], int_ranges[3]));
ax_hist.set_ylim((0, np.quantile(hist_data,0.9)));
histogram_state = histogram_range_slider.get_state()
histogram_state = histogram_state | hist_slider_state[index]
histogram_range_slider.set_state(histogram_state)
update_vlines({'new':hist_slider_state[index]['value']})
fig.canvas.draw_idle()
fig_hist.canvas.draw_idle()
return None
def toggle_scalebar(change):
scalebar = change['new']
scalebar_plot[0].set_visible(scalebar)
scalebar_text.set_visible(scalebar)
fig.canvas.draw_idle()
return None
def update_colormap(change):
cmap_string = change['new']
cmap = plt.colormaps.get_cmap(cmap_string)
im.set_cmap(cmap)
im_hist.set_cmap(cmap)
h_vlines.set_colors([cmap(cmap.N),cmap(0)])
scalebar_plot[0].set_color(cmap(cmap.N))
scalebar_text.set_color(cmap(cmap.N))
fig.canvas.draw_idle()
fig_hist.canvas.draw_idle()
return None
def update_vlines(change):
index_name = index_widget.value
index = option_list_image.index(index_name)
min, max = change['new']
p = np.array([
[
[min, 0],
[min, 1.1],
],
[
[max, 0],
[max, 1.1],
]
])
h_vlines.set_segments(p)
fig_hist.canvas.draw_idle()
im.set_clim([min,max])
im_hist.set_clim([min,max])
hist_slider_state[index]['value']=[min,max]
fig.canvas.draw_idle()
fig_hist.canvas.draw_idle()
return None
index_widget = Dropdown(options=option_list_image,index=0,layout=Layout(width='180px'))
index_widget.observe(display_frame,names='value')
scalebar_widget =Checkbox(value=True,description="Show scale bar",indent=False,layout=Layout(width='180px'))
scalebar_widget.observe(toggle_scalebar,names='value')
sequential_cmaps = [
'gray','viridis', 'plasma', 'inferno', 'magma', 'cividis','turbo',
'Purples_r', 'Blues_r', 'Greens_r', 'Oranges_r', 'Reds_r',
'YlOrBr_r', 'YlOrRd_r', 'OrRd_r', 'PuRd_r', 'RdPu_r', 'BuPu_r',
'GnBu_r', 'PuBu_r', 'YlGnBu_r', 'PuBuGn_r', 'BuGn_r', 'YlGn_r'
]
cmap_widget =Dropdown(options=sequential_cmaps,value='gray',description="Colormap",indent=False,layout=Layout(width='180px'))
cmap_widget.observe(update_colormap,names='value')
histogram_range_slider = FloatRangeSlider(
value=int_ranges[4:6],
min=int_ranges[2],
max=int_ranges[3],
step=(int_ranges[3]-int_ranges[2])/100,
continuous_update=False,
orientation='horizontal',
readout=False,
indent=True,
layout=Layout(width='190px')
)
histogram_range_slider.observe(update_vlines,names='value')
visualization_layout = Layout(
display='flex',
flex_flow='row',
align_items='center',
width='680px'
)
histogram_box_layout = Layout(
display='flex',
flex_flow='column',
align_items='center',
width='200px'
)
histogram_vbox = VBox([fig_hist.canvas,histogram_range_slider],layout=histogram_box_layout)
controls_vbox = VBox([histogram_vbox,index_widget,cmap_widget,scalebar_widget],layout=histogram_box_layout)
display(
HBox(
[
fig.canvas,
controls_vbox
],
layout=visualization_layout
)
)
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[1], line 4
1 #| label: app:interactive_image
2 # Widget for displaying images interactively.
----> 4 get_ipython().run_line_magic('matplotlib', 'widget')
6 import numpy as np
7 import matplotlib.pyplot as plt
File ~\AppData\Local\miniconda3\envs\nano\lib\site-packages\IPython\core\interactiveshell.py:2414, in InteractiveShell.run_line_magic(self, magic_name, line, _stack_depth)
2412 kwargs['local_ns'] = self.get_local_scope(stack_depth)
2413 with self.builtin_trap:
-> 2414 result = fn(*args, **kwargs)
2416 # The code below prevents the output from being displayed
2417 # when using magics with decodator @output_can_be_silenced
2418 # when the last Python token in the expression is a ';'.
2419 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False):
File ~\AppData\Local\miniconda3\envs\nano\lib\site-packages\IPython\core\magics\pylab.py:99, in PylabMagics.matplotlib(self, line)
97 print("Available matplotlib backends: %s" % backends_list)
98 else:
---> 99 gui, backend = self.shell.enable_matplotlib(args.gui.lower() if isinstance(args.gui, str) else args.gui)
100 self._show_matplotlib_backend(args.gui, backend)
File ~\AppData\Local\miniconda3\envs\nano\lib\site-packages\IPython\core\interactiveshell.py:3600, in InteractiveShell.enable_matplotlib(self, gui)
3596 print('Warning: Cannot change to a different GUI toolkit: %s.'
3597 ' Using %s instead.' % (gui, self.pylab_gui_select))
3598 gui, backend = pt.find_gui_and_backend(self.pylab_gui_select)
-> 3600 pt.activate_matplotlib(backend)
3601 configure_inline_support(self, backend)
3603 # Now we must activate the gui pylab wants to use, and fix %run to take
3604 # plot updates into account
File ~\AppData\Local\miniconda3\envs\nano\lib\site-packages\IPython\core\pylabtools.py:360, in activate_matplotlib(backend)
355 # Due to circular imports, pyplot may be only partially initialised
356 # when this function runs.
357 # So avoid needing matplotlib attribute-lookup to access pyplot.
358 from matplotlib import pyplot as plt
--> 360 plt.switch_backend(backend)
362 plt.show._needmain = False
363 # We need to detect at runtime whether show() is called by the user.
364 # For this, we wrap it into a decorator which adds a 'called' flag.
File ~\AppData\Local\miniconda3\envs\nano\lib\site-packages\matplotlib\pyplot.py:271, in switch_backend(newbackend)
268 # have to escape the switch on access logic
269 old_backend = dict.__getitem__(rcParams, 'backend')
--> 271 backend_mod = importlib.import_module(
272 cbook._backend_module_name(newbackend))
274 required_framework = _get_required_interactive_framework(backend_mod)
275 if required_framework is not None:
File ~\AppData\Local\miniconda3\envs\nano\lib\importlib\__init__.py:127, in import_module(name, package)
125 break
126 level += 1
--> 127 return _bootstrap._gcd_import(name[level:], package, level)
File <frozen importlib._bootstrap>:1014, in _gcd_import(name, package, level)
File <frozen importlib._bootstrap>:991, in _find_and_load(name, import_)
File <frozen importlib._bootstrap>:961, in _find_and_load_unlocked(name, import_)
File <frozen importlib._bootstrap>:219, in _call_with_frames_removed(f, *args, **kwds)
File <frozen importlib._bootstrap>:1014, in _gcd_import(name, package, level)
File <frozen importlib._bootstrap>:991, in _find_and_load(name, import_)
File <frozen importlib._bootstrap>:973, in _find_and_load_unlocked(name, import_)
ModuleNotFoundError: No module named 'ipympl'